MiTImageClassifier model

source

MiTImageClassifier class

keras_hub.models.MiTImageClassifier(
    backbone,
    num_classes,
    preprocessor=None,
    pooling="avg",
    activation=None,
    dropout=0.0,
    head_dtype=None,
    **kwargs
)

Base class for all image classification tasks.

ImageClassifier tasks wrap a keras_hub.models.Backbone and a keras_hub.models.Preprocessor to create a model that can be used for image classification. ImageClassifier tasks take an additional num_classes argument, controlling the number of predicted output classes.

To fine-tune with fit(), pass a dataset containing tuples of (x, y) labels where x is a string and y is a integer from [0, num_classes). All ImageClassifier tasks include a from_preset() constructor which can be used to load a pre-trained config and weights.

Arguments

  • backbone: A keras_hub.models.Backbone instance or a keras.Model.
  • num_classes: int. The number of classes to predict.
  • preprocessor: None, a keras_hub.models.Preprocessor instance, a keras.Layer instance, or a callable. If None no preprocessing will be applied to the inputs.
  • pooling: "avg" or "max". The type of pooling to apply on backbone output. Defaults to average pooling.
  • activation: None, str, or callable. The activation function to use on the Dense layer. Set activation=None to return the output logits. Defaults to "softmax".
  • head_dtype: None, str, or keras.mixed_precision.DTypePolicy. The dtype to use for the classification head’s computations and weights.

Examples

Call predict() to run inference.

# Load preset and train
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
classifier = keras_hub.models.ImageClassifier.from_preset(
    "resnet_50_imagenet"
)
classifier.predict(images)

Call fit() on a single batch.

# Load preset and train
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
labels = [0, 3]
classifier = keras_hub.models.ImageClassifier.from_preset(
    "resnet_50_imagenet"
)
classifier.fit(x=images, y=labels, batch_size=2)

Call fit() with custom loss, optimizer and backbone.

classifier = keras_hub.models.ImageClassifier.from_preset(
    "resnet_50_imagenet"
)
classifier.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=keras.optimizers.Adam(5e-5),
)
classifier.backbone.trainable = False
classifier.fit(x=images, y=labels, batch_size=2)

Custom backbone.

images = np.random.randint(0, 256, size=(2, 224, 224, 3))
labels = [0, 3]
backbone = keras_hub.models.ResNetBackbone(
    stackwise_num_filters=[64, 64, 64],
    stackwise_num_blocks=[2, 2, 2],
    stackwise_num_strides=[1, 2, 2],
    block_type="basic_block",
    use_pre_activation=True,
    pooling="avg",
)
classifier = keras_hub.models.ImageClassifier(
    backbone=backbone,
    num_classes=4,
)
classifier.fit(x=images, y=labels, batch_size=2)

source

from_preset method

MiTImageClassifier.from_preset(preset, load_weights=True, **kwargs)

Instantiate a keras_hub.models.Task from a model preset.

A preset is a directory of configs, weights and other file assets used to save and load a pre-trained model. The preset can be passed as one of:

  1. a built-in preset identifier like 'bert_base_en'
  2. a Kaggle Models handle like 'kaggle://user/bert/keras/bert_base_en'
  3. a Hugging Face handle like 'hf://user/bert_base_en'
  4. a path to a local preset directory like './bert_base_en'

For any Task subclass, you can run cls.presets.keys() to list all built-in presets available on the class.

This constructor can be called in one of two ways. Either from a task specific base class like keras_hub.models.CausalLM.from_preset(), or from a model class like keras_hub.models.BertTextClassifier.from_preset(). If calling from the a base class, the subclass of the returning object will be inferred from the config in the preset directory.

Arguments

  • preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
  • load_weights: bool. If True, saved weights will be loaded into the model architecture. If False, all weights will be randomly initialized.

Examples

# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
    "gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
    "bert_base_en",
    num_classes=2,
)
Preset nameParametersDescription
mit_b0_ade20k_5123.32MMiT (MixTransformer) model with 8 transformer blocks.
mit_b1_ade20k_51213.16MMiT (MixTransformer) model with 8 transformer blocks.
mit_b2_ade20k_51224.20MMiT (MixTransformer) model with 16 transformer blocks.
mit_b3_ade20k_51244.08MMiT (MixTransformer) model with 28 transformer blocks.
mit_b4_ade20k_51260.85MMiT (MixTransformer) model with 41 transformer blocks.
mit_b5_ade20k_64081.45MMiT (MixTransformer) model with 52 transformer blocks.
mit_b0_cityscapes_10243.32MMiT (MixTransformer) model with 8 transformer blocks.
mit_b1_cityscapes_102413.16MMiT (MixTransformer) model with 8 transformer blocks.
mit_b2_cityscapes_102424.20MMiT (MixTransformer) model with 16 transformer blocks.
mit_b3_cityscapes_102444.08MMiT (MixTransformer) model with 28 transformer blocks.
mit_b4_cityscapes_102460.85MMiT (MixTransformer) model with 41 transformer blocks.
mit_b5_cityscapes_102481.45MMiT (MixTransformer) model with 52 transformer blocks.

backbone property

keras_hub.models.MiTImageClassifier.backbone

A keras_hub.models.Backbone model with the core architecture.

preprocessor property

keras_hub.models.MiTImageClassifier.preprocessor

A keras_hub.models.Preprocessor layer used to preprocess input.