ReversibleEmbedding layer
- Original Link : https://keras.io/api/keras_hub/modeling_layers/reversible_embedding/
- Last Checked at : 2024-11-26
ReversibleEmbedding
class
keras_hub.layers.ReversibleEmbedding(
input_dim,
output_dim,
tie_weights=True,
embeddings_initializer="uniform",
embeddings_regularizer=None,
embeddings_constraint=None,
mask_zero=False,
reverse_dtype=None,
logit_soft_cap=None,
**kwargs
)
An embedding layer which can project backwards to the input dim.
This layer is an extension of keras.layers.Embedding
for language models.
This layer can be called “in reverse” with reverse=True
, in which case the
layer will linearly project from output_dim
back to input_dim
.
By default, the reverse projection will use the transpose of the
embeddings
weights to project to input_dim
(weights are “tied”). If
tie_weights=False
, the model will use a separate, trainable variable for
reverse projection.
This layer has no bias terms.
Arguments
- input_dim: Integer. Size of the vocabulary, i.e. maximum integer index + 1.
- output_dim: Integer. Dimension of the dense embedding.
- tie_weights: Boolean, whether or not the matrix for embedding and
the matrix for the
reverse
projection should share the same weights. - embeddings_initializer: Initializer for the
embeddings
matrix (seekeras.initializers
). - embeddings_regularizer: Regularizer function applied to
the
embeddings
matrix (seekeras.regularizers
). - embeddings_constraint: Constraint function applied to
the
embeddings
matrix (seekeras.constraints
). - mask_zero: Boolean, whether or not the input value 0 is a special “padding” value that should be masked out.
- reverse_dtype: The dtype for the reverse projection computation.
Defaults to the
compute_dtype
of the layer. - logit_soft_cap: If
logit_soft_cap
is set andreverse=True
, the output logits will be scaled bytanh(logits / logit_soft_cap) * logit_soft_cap
. This narrows the range of output logits and can improve training. - **kwargs: other keyword arguments passed to
keras.layers.Embedding
, includingname
,trainable
,dtype
etc.
Call arguments
- inputs: The tensor inputs to the layer.
- reverse: Boolean. If
True
the layer will perform a linear projection fromoutput_dim
toinput_dim
, instead of a normal embedding call. Default toFalse
.
Example
batch_size = 16
vocab_size = 100
hidden_dim = 32
seq_length = 50
# Generate random inputs.
token_ids = np.random.randint(vocab_size, size=(batch_size, seq_length))
embedding = keras_hub.layers.ReversibleEmbedding(vocab_size, hidden_dim)
# Embed tokens to shape `(batch_size, seq_length, hidden_dim)`.
hidden_states = embedding(token_ids)
# Project hidden states to shape `(batch_size, seq_length, vocab_size)`.
logits = embedding(hidden_states, reverse=True)
References