ImageSegmenter
- Original Link : https://keras.io/api/keras_hub/base_classes/image_segmenter/
- Last Checked at : 2024-11-26
ImageSegmenter class
keras_hub.models.ImageSegmenter(*args, compile=True, **kwargs)Base class for all image segmentation tasks.
ImageSegmenter tasks wrap a keras_hub.models.Task and
a keras_hub.models.Preprocessor to create a model that can be used for
image segmentation.
All ImageSegmenter tasks include a from_preset() constructor which can
be used to load a pre-trained config and weights.
from_preset method
ImageSegmenter.from_preset(preset, load_weights=True, **kwargs)Instantiate a keras_hub.models.Task from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
- a built-in preset identifier like
'bert_base_en' - a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en' - a Hugging Face handle like
'hf://user/bert_base_en' - a path to a local preset directory like
'./bert_base_en'
For any Task subclass, you can run cls.presets.keys() to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset(), or
from a model class like keras_hub.models.BertTextClassifier.from_preset().
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
- load_weights: bool. If
True, saved weights will be loaded into the model architecture. IfFalse, all weights will be randomly initialized.
Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)| Preset name | Parameters | Description |
|---|---|---|
| deeplab_v3_plus_resnet50_pascalvoc | 39.19M | DeepLabV3+ model with ResNet50 as image encoder and trained on augmented Pascal VOC dataset by Semantic Boundaries Dataset(SBD)which is having categorical accuracy of 90.01 and 0.63 Mean IoU. |
| sam_base_sa1b | 93.74M | The base SAM model trained on the SA1B dataset. |
| sam_large_sa1b | 641.09M | The large SAM model trained on the SA1B dataset. |
| sam_huge_sa1b | 312.34M | The huge SAM model trained on the SA1B dataset. |
compile method
ImageSegmenter.compile(optimizer="auto", loss="auto", metrics="auto", **kwargs)Configures the ImageSegmenter task for training.
The ImageSegmenter task extends the default compilation signature of
keras.Model.compile with defaults for optimizer, loss, and
metrics. To override these defaults, pass any value
to these arguments during compilation.
Arguments
- optimizer:
"auto", an optimizer name, or akeras.Optimizerinstance. Defaults to"auto", which uses the default optimizer for the given model and task. Seekeras.Model.compileandkeras.optimizersfor more info on possibleoptimizervalues. - loss:
"auto", a loss name, or akeras.losses.Lossinstance. Defaults to"auto", where akeras.losses.SparseCategoricalCrossentropyloss will be applied for the classification task. Seekeras.Model.compileandkeras.lossesfor more info on possiblelossvalues. - metrics:
"auto", or a list of metrics to be evaluated by the model during training and testing. Defaults to"auto", where akeras.metrics.SparseCategoricalAccuracywill be applied to track the accuracy of the model during training. Seekeras.Model.compileandkeras.metricsfor more info on possiblemetricsvalues. - **kwargs: See
keras.Model.compilefor a full list of arguments supported by the compile method.
save_to_preset method
ImageSegmenter.save_to_preset(preset_dir)Save task to a preset directory.
Arguments
- preset_dir: The path to the local model preset directory.
preprocessor property
keras_hub.models.ImageSegmenter.preprocessorA keras_hub.models.Preprocessor layer used to preprocess input.
backbone property
keras_hub.models.ImageSegmenter.backboneA keras_hub.models.Backbone model with the core architecture.