DenseNet backbones
- Original Link : https://keras.io/api/keras_cv/models/backbones/densenet/
- Last Checked at : 2024-11-25
DenseNetBackbone
class
keras_cv.models.DenseNetBackbone(
stackwise_num_repeats,
include_rescaling,
input_shape=(None, None, 3),
input_tensor=None,
compression_ratio=0.5,
growth_rate=32,
**kwargs
)
Instantiates the DenseNet architecture.
Arguments
- stackwise_num_repeats: list of ints, number of repeated convolutional blocks per dense block.
- include_rescaling: bool, whether to rescale the inputs. If set
to
True
, inputs will be passed through aRescaling(1/255.0)
layer. - input_shape: optional shape tuple, defaults to (None, None, 3).
- input_tensor: optional Keras tensor (i.e. output of
keras.layers.Input()
) to use as image input for the model. - compression_ratio: float, compression rate at transition layers.
- growth_rate: int, number of filters added by each dense block.
Examples
input_data = tf.ones(shape=(8, 224, 224, 3))
# Pretrained backbone
model = keras_cv.models.DenseNetBackbone.from_preset("densenet121_imagenet")
output = model(input_data)
# Randomly initialized backbone with a custom config
model = DenseNetBackbone(
stackwise_num_repeats=[6, 12, 24, 16],
include_rescaling=False,
)
output = model(input_data)
from_preset
method
DenseNetBackbone.from_preset()
Instantiate DenseNetBackbone model from preset config and weights.
Arguments
- preset: string. Must be one of “densenet121”, “densenet169”, “densenet201”, “densenet121_imagenet”, “densenet169_imagenet”, “densenet201_imagenet”. If looking for a preset with pretrained weights, choose one of “densenet121_imagenet”, “densenet169_imagenet”, “densenet201_imagenet”.
- load_weights: Whether to load pre-trained weights into model.
Defaults to
None
, which follows whether the preset has pretrained weights available.
Examples
# Load architecture and weights from preset
model = keras_cv.models.DenseNetBackbone.from_preset(
"densenet121_imagenet",
)
# Load randomly initialized model from preset architecture with weights
model = keras_cv.models.DenseNetBackbone.from_preset(
"densenet121_imagenet",
load_weights=False,
Preset name | Parameters | Description |
---|---|---|
densenet121 | Unknown | DenseNet model with 121 layers. |
densenet169 | Unknown | DenseNet model with 169 layers. |
densenet201 | Unknown | DenseNet model with 201 layers. |
densenet121_imagenet | Unknown | DenseNet model with 121 layers. Trained on Imagenet 2012 classification task. |
densenet169_imagenet | Unknown | DenseNet model with 169 layers. Trained on Imagenet 2012 classification task. |
densenet201_imagenet | Unknown | DenseNet model with 201 layers. Trained on Imagenet 2012 classification task. |
DenseNet121Backbone
class
keras_cv.models.DenseNet121Backbone(
stackwise_num_repeats,
include_rescaling,
input_shape=(None, None, 3),
input_tensor=None,
compression_ratio=0.5,
growth_rate=32,
**kwargs
)
DenseNetBackbone model with 121 layers.
Reference
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.
Arguments
- include_rescaling: bool, whether to rescale the inputs. If set
to
True
, inputs will be passed through aRescaling(1/255.0)
layer. - input_shape: optional shape tuple, defaults to (None, None, 3).
- input_tensor: optional Keras tensor (i.e. output of
layers.Input()
) to use as image input for the model.
Example
input_data = tf.ones(shape=(8, 224, 224, 3))
# Randomly initialized backbone
model = DenseNet121Backbone()
output = model(input_data)
DenseNet169Backbone
class
keras_cv.models.DenseNet169Backbone(
stackwise_num_repeats,
include_rescaling,
input_shape=(None, None, 3),
input_tensor=None,
compression_ratio=0.5,
growth_rate=32,
**kwargs
)
DenseNetBackbone model with 169 layers.
Reference
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.
Arguments
- include_rescaling: bool, whether to rescale the inputs. If set
to
True
, inputs will be passed through aRescaling(1/255.0)
layer. - input_shape: optional shape tuple, defaults to (None, None, 3).
- input_tensor: optional Keras tensor (i.e. output of
layers.Input()
) to use as image input for the model.
Example
input_data = tf.ones(shape=(8, 224, 224, 3))
# Randomly initialized backbone
model = DenseNet169Backbone()
output = model(input_data)
DenseNet201Backbone
class
keras_cv.models.DenseNet201Backbone(
stackwise_num_repeats,
include_rescaling,
input_shape=(None, None, 3),
input_tensor=None,
compression_ratio=0.5,
growth_rate=32,
**kwargs
)
DenseNetBackbone model with 201 layers.
Reference
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.
Arguments
- include_rescaling: bool, whether to rescale the inputs. If set
to
True
, inputs will be passed through aRescaling(1/255.0)
layer. - input_shape: optional shape tuple, defaults to (None, None, 3).
- input_tensor: optional Keras tensor (i.e. output of
layers.Input()
) to use as image input for the model.
Example
input_data = tf.ones(shape=(8, 224, 224, 3))
# Randomly initialized backbone
model = DenseNet201Backbone()
output = model(input_data)